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Metastable States in Homogeneous Ising Models 
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Metastable states of homogeneous 2D and 3D Ising models are studied under 
free boundary conditions. The states are defined in terms of weak and strict 
local minima of the total interaction energy. The morphology of these minima is 
characterized locally and globally on square and cubic grids. Furthermore, in 
the 2D case, transition from any spin configuration that is not a strict minimum 
to a strict minimum is possible via non-energy-increasing single flips. 
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strict interaction energy minima. 

1. I N T R O D U C T I O N  

In this paper we consider metastable states in homogeneous Ising models 
as local minima of an energy function that is defined as a sum of spin 
products s x ' s ,  over pairs (x, u) of nearest neighbor points of a finite 
regular grid G, G = R d. The local minima are described in terms of strict 
and weak minima. 

In the case d =  2, the morphology of strict and weak minima is charac- 
terized in several theorems. Moreover,  it is shown that a transition from an 
arbitrary spin configuration that is not a strict minimum to a strict 
minimum of lower energy can be achieved via a sequence of single flips. In 
the case d>~3, generalizations for some of the two-dimensional charac- 
terizations are made. Furthermore,  the behavior of three-dimensional strict 
minima is studied on the surface of G. For  the proofs, see Ref. 1. 

B a s i c  D e f i n i t i o n s  a n d  C o n v e n t i o n s .  Let g, d be natural num- 
bers with g/> 2. We define a grid G, G ~ R a, by 

G := { x l x =  (x l ,  x2,..., x a ) e R  a, xi natural, 1 ~<xi~< g} 
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Let I'd,g be the set of all spin configurations C on G, C = (sx), where sx 
{ + 1, - 1  } for all x e G. We use free boundary conditions. Consider the 
problem 

E(C) := - ~ sx'su=localminimum, C@Fd, g 
n . n .  

(n.n. denotes nearest neighbor). To specify the notion of local minimum of 
E(C), we take the following steps: With arbitrary but fixed CEFd, g and 
x e G, let Cx be identical to C with the only exception at x, where the spin 
sx in C is flipped to - s x .  Then 

AxE(C) :=E(C~) -E(C)=2  ~" sx'su 
n . n .  

x f i x e d  

D e f i n i t i o n  1. E( C), C e Fa, g, has a local minimum at C* if 

A~E(C*)>~O for all x e G  (1.1) 

E(C) has a strict minimum at C* if 

AxE(C*) > 0 for all x e a  (1.2) 

and E(C) has a weak minimum at C* if (1.1) holds and 

A~E(C*)=O for at least one x ~ G  (1.3) 

Thus, a local minimum of E(C) is either strict or weak. 

T h e o r e m  2.1. 
iff 

2. ON T H E  C A S E  d = 2  

For d - - 2  the points (x, y) of a grid G consist of four corner points, 
(g - 2) 2 inner grid points, and 4(g - 2) inner edge points. We now charac- 
terize the strict minima of E(C) locally in G. 

= (sx, y) E(C), CGFz, g, has a strict minimum at C* * 

holds for 

( . )  

s* " * - 1  (2.1) x , y  S u , v  - -  

at least three nearest neighbors (u, v) of each inner grid point 
(x, y) 

(fl) and if (x, y) is a corner point, for the 2 n.n. (u, v) 
(7) and if (x, y) is an inner edge point, for at least 2 n.n. (u, v) 

The conditions (~), ( i l l  and (7) are illustrated in Fig. 1. 
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Fig. I. 
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.+ 

C h a r a c t e r i z a t i o n  o f  a s t r ic t  m i n i m u m  of  E(C), p o i n t w i s e  m G. 

m . +  

Next we characterize the strict minima of E(C) globally on G. 

C - (Sx, y) T h e o r e m  2.2. E(C), CeF2,g, has a strict minimum at * -  * 
iff C* falls under one of the following cases: 

(c0 sx.y* -- l for all (x, y) �9 G 
(/~) sx, y* = - 1  for all ( x , y ) � 9  
(?) C* consists of at least two either horizontal or vertical stripes, 

which alternate in spin sign and have a width of at least 2. 

The case (7) of Theorem 2.2 is illustrated on a 7 x 7 grid in Fig. 2. 

In analogy to Theorem 2.1, we characterize the weak minima of E(C). 

= (  ~ v) T h e o r e m  2.3. E(C), C~F2,g, has a weak minimum at C* s* 
iff (2.1) holds for 

(c0 at least one n.n. (u, v) of each corner point (x, y) 
(/7) at least two n.n. (u, v) of each noncorner point 
(7) Ax,~E(C*)=O for at least one (x, y)aG. 

As an illustration of Theorem 2.3, consider Fig. 3. 

To characterize the weak minima of E(C) globally on G, we introduce 
"quadrigas," "rings," "streets," and unions of these special subcon- 
figurations. 

There are only two types of quadrigas: 

+ +  
and + +  

Figure 4 gives examples for unions of ( + )-quadrigas. 

+ +  + + +  + + - 
+ +  + + +  + - +  

s t r i c t  + + + + + + + n o t  a s t r i c t  + +  + + +  + + - -  
m i n i m u m  min imum + +  + + +  + - §  

+ +  + + +  + + - -  
+ +  + + +  + + - 

Fig.  2. E x a m p l e  a n d  c o u n t e r e x a m p l e  for  a s t r ic t  m i n i m u m .  
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weak 
minimum 

+ . . . . .  + 

+ . . . . .  + 

+ - + + + + +  

+ - + + - - +  

+ - - + - - +  

+ - - + - - +  

+ - - + + + §  

- + . . . .  + 

- + - + - - + 

- + . . . .  + 

- + -  - - + +  

. .1. . . . . .  

- .[, . . . . .  

not  a weak 
minimum 

F i g .  3. E x a m p l e  a n d  c o u n t e r e x a m p l e  f o r  a w e a k  m i n i m u m .  

A ring p is a subconfiguration of at least eight points of the same spin 
a such that every ring point has exactly two n.n. in p. It gives rise to a 
double point free, closed path P just connecting the points of p by straight 
lines, each line of length 1. All n.n. (u, v) of ring points, where the n.n. lie 
inside the region bounded by P, must have spin - a .  An example and 
counterexample of a ring are given in Fig. 5. 

A street S is a subconfiguration of at least two points of the same spin 
o- such that every street point has at most two n.n. in S. It is not a subset of 
a ring and gives rise to a double point free, possibly closed path P, just 
connecting the points of S by straight lines, each line of length 1, such that 

(S1) the endpoints (x, y) of P are either corner points with su,~ = s+,+v 
for exactly one n.n. (u, v) or otherwise s,,v=Sx, y for at least 
three n.n. 

(S2) s u , ~ = - a  for all n.n. (u,v) of each ( x , y ) e S  if ( u ,v )$S  and 
(x, y) is not an endpoint of P. 

Examples and counterexamples for streets are given in Fig. 6. 
With these definitions we can state the following result: 

T h e or e m 2.4. E(C), C~F2,g  , has a weak minimum at C* =(s*x.y) 
iff C* is not a strict minimum and both subconfigurations of all plus-spins 
and all minus-spins are a union of quadrigas, rings, and streets of the same 
spin sign, respectively. 

An example of a weak minimum is given in Fig. 3. Note that, if C* is a 
weak minimum, then each ring in C* contains at least one quadriga. 

. . . . . .  + + - - + +  

- - + + -  - + + -  - + +  

+ + + + + +  . . . . . .  

+ + -  + + +  - - + +  - - 

. . . .  + +  + + + + + +  

. . . . . .  + + + + + +  

The union can be 
p a r t i a l l y  d i s j o i n t  

F i g .  4.  U n i o n s  o f  q u a d r i g a s .  
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+ + + + + + + + + +  

++ ' - - - I + + + +  
+ + - +1+ 

+ + + + +  

+ + + + + + + + + +  

not a ring 

r ing 

Fig. 5. Ring and ringlike subconfigurations. 

C has I . . . . .  - 
e x a c t l y  I - I  + +[__~_~ + I-  
3 s t r e e t s  - + + - - l +  - 

/ -  + + F - Z l - i +  - 
- +  - 

n o t  a r i n g - @  - I +  + l : l  + + I -  

b u t  a s t r e e t  I -  - - L ~ -  - - 

+ + + [ - ~ +  + [ ~ o t  a s t r e e t  

- - + i - J + + L ~  / 

- - + + + + 1 - 1  C has e x a c t l y  
- - + - - + I - I  3 s t r e e t s  
+ + + - - + +  

Fig. 6. Streets in 7 x 7-grid spin configurations. 
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A E = 0 "  

- + + - -  + 

+0+ + 
+ + 

I [ - I 

AE : - 6  

+ + + + + + + + 

+ + + + + + + + 

I I I I 1 I 

~E:0 ~E : -2 AE=-4 

C 5 

Fig. 7. A sequence of single flips not increasing the energy; the spins to be flipped are circled. 

weak minimum + - - + + - - + 
+ - - + + - - + 

i f  f r e e  b o u n d . ,  + - - + + - - + 
+ - - + + - - + 

s t r i c t  minimum 
+ - - + -1- - - -l- 

i f  p e r i o d ,  bound .  + - - + + - - + 
+ - - + + - - + 

+ - - + + - = + 

+ - + . . . .  + 

+ - - t -  - - - - + 

+ - + - - - - + 

_ - a m - _ _ . = 

_ _ + - - - . _ 

+ . + . . . .  + 

n o t  a minimum 

i f  f r e e  b o u n d . ,  

weak minimum 

i f  p e r i o d ,  bound.  

Fig. 8. The influence of periodic boundary conditions. 
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(Transit ion-) Theorem 2.5. Let Co, Coe]'2,g , be any con- 
figuration that is not a strict minimum of E(C). Then there is a finite 
sequence Co, C1 ..... Coo, Ci~ Fzg, and a strict minimum Cos~ of E(C) such 
that for i -- 0, 1 ..... co o - 1, Ci + 1 is obtained from Ci by a single flip, where 
E(C~+ 1) <- E(C~) and E(C~o ) < E(Co). 

An illustration of Theorem 2.5 is given in Fig. 7. 
A sequence of single flips can never reach a global minimum if Co has 

at least two stripes of width at least 2 and of opposite spin sign. 

3. ON THE CASE d>~3 

First we give the d-dimensional generalizations of Theorems 2.1 
and 2,3. 

T h e o r e m s  3.1 a n d  3.2. Let d be a natural number. With x(k)= 
[ ( k + l ) / 2 ] - I  {)~(k)=[k/2]}, the energy E(C), C~Fag, has a strict 
(weak) minimum at C* iff s*.s*= 1 for at least d - x ( k )  [at  least 
d -  )~(k)] n.n. u of each grid point x, which has exactly 2 d -  k n.n. u in G, 
k = 0, 1,..., d (and in the case of a weak minimum additionally (1.3) holds). 

Here [z]  means the greatest integer less than or equal to z. 
The next theorem describes the behavior of a three-dimensional strict 

minimum of E(C) on the surface of G, G ~ R 3. 

Theorem 3.3. If E(C), CeF3..~, has a strict minimum at C* and if 
C* is the restriction of C* to any of the six "faces" of G, then C* is a local 
minimum of E(C) on the face. 

Finally we give a condition for a strict minimum C* e F3,g that is only 
sufficient. 

Theorem 3.4. Let C* e/ '?,g. If the restriction of C* to each plane 
parallel to some face F of G yields the same configuration and if this con- 
figuration is a local minimum of E(C), C~F2, ~, then C* is a strict 
minimum of E(C), Ce F3..e. 

4. C O N C L U D I N G  R E M A R K S  

The prospects of getting a three-dimensional analog to Theorem 2.2 
and of extending Theorems 2.5 and 3.3 to higher dimensions are good. 

Periodic boundary conditions lead, for instance, in the case d =  2 to 
simplified versions of Theorems 2.1 and 2.3. As for Theorems 2.2 and 2.4, 
there are some slight but essential changes to be made, as can be seen from 
Fig. 8. 
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